Difference between revisions of "Flocculation"
Stef Denayer (talk | contribs) (Created page with "Flocculation is used in biotechnology applications in conjunction with microfiltration to improve the efficiency of biological feeds. The addition of synthetic flocculants to...") |
(No difference)
|
Revision as of 14:56, 6 September 2021
Flocculation is used in biotechnology applications in conjunction with microfiltration to improve the efficiency of biological feeds. The addition of synthetic flocculants to the bioreactor can increase the average particle size making microfiltration more efficient. When flocculants are not added, cakes form and accumulate causing low cell viability. Positively charged flocculants work better than negatively charged ones since the cells are generally negatively charged
Input
x
Process and technologies
In the brewing industry flocculation is a very important process in fermentation during the production of beer where cells form macroscopic flocs. These flocs cause the yeast to sediment or rise to the top of a fermentation at the end of the fermentation. Subsequently, the yeast can be collected (cropped) from the top (ale fermentation) or the bottom (lager fermentation) of the fermenter in order to be reused for the next fermentation.
Yeast flocculation is primarily determined by the calcium concentration, often in the 50-100ppm range. Calcium salts can be added to cause flocculation, or the process can be reversed by removing calcium by adding phosphate to form insolubable calcium phosphate, adding excess sulfate to form insoluble calcium sulfate, or adding EDTA to chelate the calcium ions. While it appears similar to sedimentation in colloidal dispersions, the mechanisms are different.
Output
x
Technology providers
ABC
describe the company, here is an example
ABC was founded in 20... 12 by KNN and Syncom, in collaboration with the university of Groningen, Netherlands. The company is a technology provider developing chemical recycling technologies for different feedstocks including non-food bio- and plastics waste. In 2018 a pilot plant with the capability to process biomass and plastic waste was set up at the Zernike Advanced Processing (ZAP) Facility. The company is now focused on setting up their first commercial plant with a capacity of 20,000 to 30,000 tonnes. The investing phase B was recently completed, with the last investment phase in 2019 the financial requirements are fulfilled to complete the commercialisation activities to build the plant which is expected for 2023.
describe their technology, here is an example
The technology is based on an Integrated Cascading Catalytic Pyrolysis (ICCP) process, being able to produce aromatics including benzene, toluene, and xylene (BTX) as well as light olefins from low grade biomass and plastics waste. This technology utilises catalytic cracking in a two-step process at temperatures between 450- 850 °C. In the first step the feedstock material is vaporised via thermal cracking. The pyrolysis vapours are then directly passed into a second reactor in which they are converted into aromatics by utilising a zeolite catalyst which can be continuously regenerated. Finally, the products are separated from the gas via condensation. An ex situ approach of catalytic conversion has several advantages such as the protection of the catalyst from deactivation/degradation expanding its lifetime, a greater variety of feedstock, and a precise adjustment of process conditions (e.g. temperature, catalyst design, and Weight Hourly Space Velocity (WHSV) in each step for improved yields. In current pilot plant with 10 kg h-1 feed capacity for either waste plastics or biomass, final design details are established, which will be include in the running engineering activities for the commercial plant.
General information | |||
Company: | ABC | ||
Country: | |||
Contact: | |||
Webpage: | https://biobtx.com/ | ||
Technology and process details | |||
Technology name: | Integrated Cascading Catalytic Pyrolysis (ICCP) technology | Technology category: | Conversion (Thermochemical processes and technologies) |
TRL: | 5-6 | Capacity: | 10 kg·h-1 |
Atmosphere: | Inert | Catalyst: | Zeolite |
Heating: | Fluidised sand bed | Pressure: | 1-4 bar |
Reactor: | Fluidised sand bed, fixed bed | Temperature: | 450-650 °C |
Other: | Unknown | ||
Feedstock and product details | |||
Feedstock: | Biomass (liquid, solid), wood pulp lignin residues, used cooking oil | Product: | Benzene, toluene, xylene, aromatics, light gases |