Difference between revisions of "Microwave treatment"
[checked revision] | [checked revision] |
Lars Krause (talk | contribs) |
Lars Krause (talk | contribs) |
||
Line 16: | Line 16: | ||
==Process and technologies== | ==Process and technologies== | ||
The breakdown of lignocellulosic biomass is induced via dielectric polarisation<ref>{{Cite journal|title=Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview|year=2017-03|author=Alejandra Aguilar-Reynosa, Aloia Romaní, Rosa Ma. Rodríguez-Jasso, Cristóbal N. Aguilar, Gil Garrote, Héctor A. Ruiz|journal=Energy Conversion and Management|volume=136|page=50–65|doi=10.1016/j.enconman.2017.01.004}}</ref> | |||
Compared to other thermal treatments, the technology brings several advantages, such as reduced plant footprint, higher throughput, higher reaction rates, higher yield and purity, which has recently led to greater interest<ref name=":0" />. The process can also be combined with chemical treatments utilising chemicals such as [[Hydrolysis#Alkali|alkaline]] (to remove lignin) and [[Hydrolysis#Acid Acid|acid]] (to remove hemicellulose) solutions, ammonia, and [[Hydrolysis#Metal_salts|metal salts]]<ref name=":0" />. | Compared to other thermal treatments, the technology brings several advantages, such as reduced plant footprint, higher throughput, higher reaction rates, higher yield and purity, which has recently led to greater interest<ref name=":0" />. The process can also be combined with chemical treatments utilising chemicals such as [[Hydrolysis#Alkali|alkaline]] (to remove lignin) and [[Hydrolysis#Acid Acid|acid]] (to remove hemicellulose) solutions, ammonia, and [[Hydrolysis#Metal_salts|metal salts]]<ref name=":0" />. | ||
Revision as of 13:46, 13 September 2021
Technology | |
Technology details | |
Name: | Microwave pre-treatment |
Category: | |
Feedstock: | Biowaste |
Product: |
The Microwave pre-treatment includes technologies that utilise electromagnetic radiation to induce thermal and non-thermal effects that drive physical, chemical or biological reactions[1]. The technology is usually utilised in food drying or to break down the structure of lignocellulosic biomass leading to the release of different substances (e.g. fermentable sugar).
Feedstock
Origin and composition
Lignocellulosic biomass
Pre-treatment
Process and technologies
The breakdown of lignocellulosic biomass is induced via dielectric polarisation[2]
Compared to other thermal treatments, the technology brings several advantages, such as reduced plant footprint, higher throughput, higher reaction rates, higher yield and purity, which has recently led to greater interest[1]. The process can also be combined with chemical treatments utilising chemicals such as alkaline (to remove lignin) and acid (to remove hemicellulose) solutions, ammonia, and metal salts[1].
Product
- Fermentable sugar (e.g. for bio-alcohol production)
Technology providers
Patents
References
- ↑ a b c Ethaib, S., Omar, R., Kamal, S. M. M., Biak, D. R. A., 2015: MICROWAVE-ASSISTED PRETREATMENT OF LIGNOCELLULOSICBIOMASS: A REVIEW. Journal of Engineering Science and Technology, Vol. January (2015), 97-109. doi: https://doi.org/
- ↑ Alejandra Aguilar-Reynosa, Aloia Romaní, Rosa Ma. Rodríguez-Jasso, Cristóbal N. Aguilar, Gil Garrote, Héctor A. Ruiz, 2017-03: Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Conversion and Management, Vol. 136, 50–65. doi: https://doi.org/10.1016/j.enconman.2017.01.004