Difference between revisions of "Polymerisation"
[checked revision] | [checked revision] |
Bas Davidis (talk | contribs) |
Lars Krause (talk | contribs) |
||
Line 10: | Line 10: | ||
Three critical processes to obtain sustainable bio-based polymers are the conversion of lignin monomers to polymers, the production of bio-based polyolefins, for example from ethylene via the ethanol route, and the production of long-chain aliphatic polycondensates, which can be obtained from fatty acids.<ref name=":0" /> | Three critical processes to obtain sustainable bio-based polymers are the conversion of lignin monomers to polymers, the production of bio-based polyolefins, for example from ethylene via the ethanol route, and the production of long-chain aliphatic polycondensates, which can be obtained from fatty acids.<ref name=":0" /> | ||
==Technology providers== | ==Technology providers== | ||
[ | {| class="wikitable sortable mw-collapsible mw-collapsed" | ||
|+'''Technology comparison''' | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| Company name | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| Country | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| Technology category | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| Technology name | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| TRL | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| Capacity [kg/h] | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| Catalyst | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| Residence time [h] | |||
! class="cd-text-darkgreen" style="vertical-align:{{{va|bottom}}}"| Temperature [°C] | |||
! class="cd-text-darkgreen" style="{{writing-mode|s2}};vertical-align:{{{va|bottom}}}"| Feedstock: Food waste | |||
! class="cd-text-darkgreen" style="{{writing-mode|s2}};vertical-align:{{{va|bottom}}}"| Feedstock: Garden & park waste | |||
|- | |||
! style="height:1.8em;"| | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
|- | |||
| [[Help:Article content of technology pages#Company_1|Company 1]] | |||
| [Country HQ location] | |||
| [Technology category (if different sub-categories are defined this has to be specified here, the available categories can be found on each technology page under the chapter [[Help:Article content of technology pages#Process_and_technologies|Process and technologies]])] | |||
| [Technology name (the "branded name" or the usual naming from company side)] | |||
| [4-9] | |||
| [numeric value] | |||
| | |||
| | |||
| | |||
| class="cd-background-lightgreen cd-text-darkgreen" style="text-align:center" |● | |||
| class="cd-background-lightgreen cd-text-darkgreen" style="text-align:center" |● | |||
|- | |||
| [[Help:Article content of technology pages#Company_2|Company 2]] | |||
| [Country HQ location] | |||
| [(if different sub-categories are defined this has to be specified here, the available categories can be found on each technology page under the chapter [[Help:Article content of technology pages#Process_and_technologies|Process and technologies]])] | |||
| [Technology name (the "branded name" or the usual naming from company side)] | |||
| [4-9] | |||
| [numeric value] | |||
| | |||
| | |||
| | |||
| class="cd-background-lightgreen cd-text-darkgreen" style="text-align:center" |● | |||
| class="cd-background-lightgreen cd-text-darkgreen" style="text-align:center" |● | |||
|} | |||
===Petron Scientech Inc. (Ethanol to Ethylene)=== | ===Petron Scientech Inc. (Ethanol to Ethylene)=== | ||
==Patents== | ==Patents== | ||
Currently no patents have been identified yet. | Currently no patents have been identified yet. | ||
==References== | ==References== | ||
<references /> | <references /> |
Revision as of 07:59, 25 November 2021
Technology | |
Technology details | |
Name: | Polymerisation |
Category: | Conversions |
Feedstock: | Single molecules, monomers |
Product: | Polymers (polyolefins, polycondensates) |
Polymerisation (polymerization in American English) is the process of reaction smaller molecules, i.e. monomers, together into a chain or network, i.e. a polymer. There are many forms of polymerisation reactions. A common distinction is between homopolymers, where one type of monomer forms the polymer, and co-polymers, where multiple different monomers make up the polymer. A well-known application of polymers is in plastics. However, polymerisations can also lead to smaller chains, known as oligomers, which are for example used as plasticisers and lubricants.
Feedstock
Several bio-based feedstock options have been explored for the production of bio-based polymers. Lignin can be depolymerised and the obtained products can be used as monomers. Ethanol from fermentations can be processed to produce ethylene, a common feedstock for polymerisations. Fatty acids can be used in long-chain linear aliphatic polymers. Other biomass feedstock includes CO2, terpenes, and furfural.[1] High purity of the feedstock is crucial for successful polymerisation reactions, which are highly susceptible to pollutants, often leading to lower polymerisation grades or smaller polymerisation chains.
Process and technologies
There has been signifcant effort to produce polymers from biomass rest streams. The key challenge lies in producing materials that have comparable or improved properties to their fossil-based counterparts. The right processing, which is often neglected by chemists, plays a crucial role in enhancing the material properties.[1]
Product
Three critical processes to obtain sustainable bio-based polymers are the conversion of lignin monomers to polymers, the production of bio-based polyolefins, for example from ethylene via the ethanol route, and the production of long-chain aliphatic polycondensates, which can be obtained from fatty acids.[1]
Technology providers
Company name | Country | Technology category | Technology name | TRL | Capacity [kg/h] | Catalyst | Residence time [h] | Temperature [°C] | Feedstock: Food waste | Feedstock: Garden & park waste |
---|---|---|---|---|---|---|---|---|---|---|
Company 1 | [Country HQ location] | [Technology category (if different sub-categories are defined this has to be specified here, the available categories can be found on each technology page under the chapter Process and technologies)] | [Technology name (the "branded name" or the usual naming from company side)] | [4-9] | [numeric value] | ● | ● | |||
Company 2 | [Country HQ location] | [(if different sub-categories are defined this has to be specified here, the available categories can be found on each technology page under the chapter Process and technologies)] | [Technology name (the "branded name" or the usual naming from company side)] | [4-9] | [numeric value] | ● | ● |
Petron Scientech Inc. (Ethanol to Ethylene)
Patents
Currently no patents have been identified yet.
References
- ↑ a b c Zhongkai Wang, Mitra S. Ganewatta, Chuanbing Tang, 2020-02-01: Sustainable polymers from biomass: Bridging chemistry with materials and processing. Progress in Polymer Science, Vol. 101, 101197. doi: https://doi.org/10.1016/j.progpolymsci.2019.101197