Difference between revisions of "Microwave treatment"
[checked revision] | [checked revision] |
Lars Krause (talk | contribs) |
Lars Krause (talk | contribs) |
||
Line 71: | Line 71: | ||
| | | | ||
|- | |- | ||
| [[ | | [[Microwave treatment#Biowave Technologies|Biowave Technologies]] | ||
| [Country HQ location] | | [Country HQ location] | ||
| [(if different sub-categories are defined this has to be specified here, the available categories can be found on each technology page under the chapter [[Help:Article content of technology pages#Process_and_technologies|Process and technologies]])] | | [(if different sub-categories are defined this has to be specified here, the available categories can be found on each technology page under the chapter [[Help:Article content of technology pages#Process_and_technologies|Process and technologies]])] |
Revision as of 08:42, 2 February 2023
Technology | |
Technology details | |
Name: | Microwave pre-treatment |
Category: | Pre-processing (Physical processes and technologies), Post-processing (Physical processes and technologies) |
Feedstock: | Food and kitchen waste (lignocellulosic materials), Garden and park waste (lignocellulosic materials) |
Product: | Fermentable sugar |
For microwave (MW) treatment electromagnetic radiation is used to induce thermal and non-thermal effects that drive physical, chemical or biological reactions[1]. As a rapid and effective heating source with both thermal and non-thermal effects, MW can directly interact with the material, thereby accelerating chemical, physical, and biologic reactions.[2] Microwave treatment causes a rise in the temperature within a penetrated medium as a result of rapid changes of the electromagnetic field at high frequency.[3] The technology is usually applied in food drying or to break down the structure of lignocellulosic biowaste leading to the release of different substances, such as fermentable sugars.
Feedstock
Origin and composition
Microwave irradiation has been successfully used in the pretreatment of several biowaste streams, including agricultural residues, woody biomass, grass, energy plants, and industrial residuals.[4]
Pre-treatment
Process and technologies
The breakdown of lignocellulosic biomass into its monomers and oligomers is induced via molecular collision due to dielectric polarisation[5]. Compared to other thermal treatments, the technology brings several advantages, such as reduced plant footprint, higher throughput, higher reaction rates, as well as higher yield and purity[1]. However, a disadvantage is the unequal distribution of the applied microwave power through non-homogeneous material (such as differences in composition, geometry, or size) as well as local overheating through resonance (electromagnetic wave reflection and formation of standing waves) and low penetration for bulk materials [5].
The process can also be combined with chemicals such as alkaline (to remove lignin), acid (to remove hemicellulose), ammonia, and metal salts[1].
Product
- Fermentable sugar (e.g. for bio-alcohol production)
Post-treatment
Technology providers
Company name | Country | Technology category | Technology name | TRL | Capacity [kg/h] | Temperature [°C] | Frequency [GHz] | Power [W] | Penetration depth [cm] | Processable volume [L] | Feedstock: Food waste | Feedstock: Garden & park waste |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Biorenewables Development Centre | [Country HQ location] | [Technology category (if different sub-categories are defined this has to be specified here, the available categories can be found on each technology page under the chapter Process and technologies)] | [Technology name (the "branded name" or the usual naming from company side)] | [4-9] | [numeric value] | |||||||
Biowave Technologies | [Country HQ location] | [(if different sub-categories are defined this has to be specified here, the available categories can be found on each technology page under the chapter Process and technologies)] | [Technology name (the "branded name" or the usual naming from company side)] | [4-9] | [numeric value] | ● |
Biorenewables Development Centre
General information | |||
Company: | Biorenewables Development Centre | ||
Country: | United Kingdom | ||
Contact: | Anna Alessi | ||
Webpage: | http://www.biorenewables.org | ||
Technology and process details | |||
Technology name: | Technology category: | Pre-processing (Physical processes and technologies), Post-processing (Physical processes and technologies) | |
TRL: | Capacity: | kg·h-1 | |
Frequency: | GHz | Penetration depth: | cm |
Power: | W | Processable volume: | L |
Temperature: | °C | Other: | |
Feedstock and product details | |||
Feedstock: | Product: |
The Biorenewables Development Centre (BDC) is an open-access R&D biorefinery centre, based at the University of York, working at the interface between academia and industry to convert plants, microbes and biowastes into profitable biorenewable products. With biologists, chemists, and business development specialists the BDC team offers a unique combination of multi-disciplinary expertise coupled with pilot-scale processing capabilities in one coordinated centre. Covering a broad spectrum of biorefining technologies, from feedstock assessment to product evaluation, the team specialise in making the most out of biorenewable materials; helping ideas to survive the valley of death; and de-risking the innovation process.
Biowave Technologies
General information | |||
Company: | Biowave Technologies | ||
Country: | Ireland | ||
Contact: | info@biowave-tech.com | ||
Webpage: | www.biowave-tech.com | ||
Technology and process details | |||
Technology name: | Microwave pre-treatment | Technology category: | Pre-processing (Physical processes and technologies), Post-processing (Physical processes and technologies) |
TRL: | 7 | Capacity: | 500-8000 kg·h-1 |
Frequency: | 0.915 GHz | Penetration depth: | cm |
Power: | 30,000-300,000 W | Processable volume: | 500-8000 L |
Temperature: | °C | Other: | |
Feedstock and product details | |||
Feedstock: | Dairy processing waste, FOG waste, waste activated sludge, agricultural residues, food waste | Product: | Digestible feedstock for AD |
Biowave Technologies transform organic waste streams into renewable energy resources.
Endeavour Energia Srl
General information | |||
Company: | Endeavour Energia Srl | ||
Country: | Italy | ||
Contact: | |||
Webpage: | http://www.endeavoursrl.com/ | ||
Technology and process details | |||
Technology name: | Endeavour Microwave Gasification | Technology category: | Pre-processing (Physical processes and technologies), Post-processing (Physical processes and technologies) |
TRL: | 6 | Capacity: | 100 kg·h-1 |
Frequency: | GHz | Penetration depth: | cm |
Power: | 100 - 200 k W | Processable volume: | L |
Temperature: | >1400 °C | Other: | |
Feedstock and product details | |||
Feedstock: | Rice and wheat husks, anaerobic digestion digestate, animal litter, woody biomass. | Product: | Syngas and biochar |
Endeavor Srl. was born in 2015 as an innovative start-up with a clear project: to design and build a plant capable of transforming biomass and waste into electrical and thermal energy through an innovative and patented technology based on microwaves.
The Endeavour Microwave Gasification technology by Endeavour Energia S.r.l. can be used to upgrade waste and biomass feeds, such as rice and wheat husks, woody biomass, sludge from anaerobic digestion and litter from animal farms to electricity, heat, and biochar. According to Endeavour, the technology is characterized by the use of microwave-assisted high temperature gasification (>1400 °C) together with a simplified filtering system in a setup that does not generate waste in need of disposal.
MEAM International
General information | |||
Company: | MEAM International | ||
Country: | Belgium | ||
Contact: | |||
Webpage: | https://meam-international.com/ | ||
Technology and process details | |||
Technology name: | MEAM Dry S48 HR | Technology category: | Pre-processing (Physical processes and technologies), Post-processing (Physical processes and technologies) |
TRL: | Capacity: | 5000 kg·h-1 | |
Frequency: | 2.45 GHz | Penetration depth: | cm |
Power: | 48 k W | Processable volume: | L |
Temperature: | Max 70 °C | Other: | |
Feedstock and product details | |||
Feedstock: | Different industrial food and non-food applications. | Product: | Drying, conditioning, heating. |
MEAM was founded over 10 years ago by the electronic engineer specializing in high-power EM energy Carlo Groffils. Since then, MEAM has become an international player with offices in Belgium and the Netherlands and successfully delivered over 350 microwave projects to both large and small enterprises. MEAM's focus lies today on the food industry, as well as industrial microwave processing of wood, glass and plastics, and water and solvent-based paint, coating and drying in technical applications.
MEAM has developed an adapted continuous system, the MEAM DRY S48 HR, where the S stands for Sheet and HR for Heat Recovery, respectively. Depending on the process, it is possible to recover the heat from the cooling water or exhaust air to defrost or preheat the product.
Open access pilot and demo facility providers
Currently no providers have been identified.
Patents
Currently no patents have been identified.
References
- ↑ a b c Ethaib, S., Omar, R., Kamal, S. M. M., Biak, D. R. A., 2015: MICROWAVE-ASSISTED PRETREATMENT OF LIGNOCELLULOSICBIOMASS: A REVIEW. Journal of Engineering Science and Technology, Vol. January (2015), 97-109. doi: https://doi.org/
- ↑ Jian Xu, 2014: Microwave Pretreatment. Pretreatment of Biomass: Processes and Technologies. Ashok Pandey, Sangeeta Negi, Parmeswaran Binod, Christian Larroche (Ed.). Elsevier, Amsterdam.
- ↑ Anthony R. Bird, Amparo Lopez-Rubio, Ashok K. Shrestha, Michael J. Gidley, 2009: Resistant Starch in Vitro and in Vivo: Factors Determining Yield, Structure, and Physiological Relevance. Modern Biopolymer Science. Stefan Kasapis, Ian T. Norton, Johan B. Ubbink (Ed.). Elsevier, Amsterdam.
- ↑ Ashok Pandey, Sangeeta Negi, Parameswaran Binod, Christian Larroche, 2014: Chapter 9 - Microwave Pretreatment. Pretreatment of biomass : processes and technologies. {{{editor}}} (Ed.). Elsevier BV, Amsterdam.
- ↑ a b Alejandra Aguilar-Reynosa, Aloia Romaní, Rosa Ma. Rodríguez-Jasso, Cristóbal N. Aguilar, Gil Garrote, Héctor A. Ruiz, 2017-03: Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Conversion and Management, Vol. 136, 50–65. doi: https://doi.org/10.1016/j.enconman.2017.01.004