Difference between revisions of "Membrane filtration"

Jump to navigation Jump to search
2,625 bytes added ,  13:33, 30 August 2021
Line 9: Line 9:
x
x
==Technology providers==
==Technology providers==
===ABC===
ABC was founded in 20... 12 by KNN and Syncom, in collaboration with the university of Groningen, Netherlands. The company is a technology provider developing chemical recycling technologies for different feedstocks including non-food bio- and plastics waste. In 2018 a pilot plant with the capability to process biomass and plastic waste was set up at the Zernike Advanced Processing (ZAP) Facility. The company is now focused on setting up their first commercial plant with a capacity of 20,000 to 30,000 tonnes. The investing phase B was recently completed, with the last investment phase in 2019 the financial requirements are fulfilled to complete the commercialisation activities to build the plant which is expected for 2023.
{{Infobox provider-pyrolysis
| Company = Bio-BTX B.V.
| Webpage = https://biobtx.com/
| Location = The Netherlands
| Business-Model = Licensing
| TRL = 5-6
| Patent = WO2017222380A1
| Technology name = Integrated Cascading Catalytic Pyrolysis (ICCP) technology
| Technology category = Catalytic Pyrolysis, two-step
| Feedstock = Biomass (liquid, solid), wood pulp lignin residues, used cooking oil
| Product = Benzene, toluene, xylene, aromatics, light gases
| Reactor = Fluidised sand bed, fixed bed
| Heating = Fluidised sand bed
| Atmosphere = Inert
| Pressure = 1-4
| Capacity = 10
| Temperature = 450-650
| Catalyst = Zeolite
| Other = Unknown
}}
The technology is based on an Integrated Cascading Catalytic Pyrolysis (ICCP) process, being able to produce aromatics including benzene, toluene, and xylene (BTX) as well as light olefins from low grade biomass and plastics waste. This technology utilises catalytic cracking in a two-step process at temperatures between 450- 850 °C. In the first step the feedstock material is vaporised via thermal cracking. The pyrolysis vapours are then directly passed into a second reactor in which they are converted into aromatics by utilising a zeolite catalyst which can be continuously regenerated. Finally, the products are separated from the gas via condensation. An ex situ approach of catalytic conversion has several advantages such as the protection of the catalyst from deactivation/degradation expanding its lifetime, a greater variety of feedstock, and a precise adjustment of process conditions (e.g. temperature, catalyst design, and Weight Hourly Space Velocity (WHSV) in each step for improved yields. In current pilot plant with 10 kg h-1 feed capacity for either waste plastics or biomass, final design details are established, which will be include in the running engineering activities for the commercial plant.
==Patents==
==Patents==
==References==
==References==
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu