Difference between revisions of "Gasification"

Jump to navigation Jump to search
212 bytes added ,  12:28, 20 September 2021
m
Infobox technology
m (Infobox technology)
Line 1: Line 1:
{{Infobox technology
|Name=Gasification
|Category=Primary processing
|Feedstock = Garden and Park waste (lignocellulosic biomass, dry organic fraction of municipal solid waste)
|Product =Producer gas, Syngas
}}
<onlyinclude>'''Gasification''' is the conversion of a solid or liquid organic compound in a gas phase and a solid phase. The gas phase, usually called 'syngas' or 'producer gas', has a high heating power and can be used for power generation or biofuel production. The solid phase, called char, includes the organic unconverted fraction and the inert material present in the treated feedstock.</onlyinclude> The syngas produced is a gas mixture of carbon monoxide (CO), hydrogen (H<sub>2</sub>), methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) as well as light hydrocarbons, such as ethane and propane, and heavier hydrocarbons, such as tars. Undesirable gases, such as sulphidric (H<sub>2</sub>S) and chloridric acid (HCl), or inert gases, such as nitrogen (N<sub>2</sub>), can be present in the syngas. Conversion of organic material is achieved by exposing the feedstock to high temperatures, typically 700°C - 1100°C in the presence of a gasifying agent. The gasifying agents used are air, oxygen, steam or a mixture thereof.  
<onlyinclude>'''Gasification''' is the conversion of a solid or liquid organic compound in a gas phase and a solid phase. The gas phase, usually called 'syngas' or 'producer gas', has a high heating power and can be used for power generation or biofuel production. The solid phase, called char, includes the organic unconverted fraction and the inert material present in the treated feedstock.</onlyinclude> The syngas produced is a gas mixture of carbon monoxide (CO), hydrogen (H<sub>2</sub>), methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) as well as light hydrocarbons, such as ethane and propane, and heavier hydrocarbons, such as tars. Undesirable gases, such as sulphidric (H<sub>2</sub>S) and chloridric acid (HCl), or inert gases, such as nitrogen (N<sub>2</sub>), can be present in the syngas. Conversion of organic material is achieved by exposing the feedstock to high temperatures, typically 700°C - 1100°C in the presence of a gasifying agent. The gasifying agents used are air, oxygen, steam or a mixture thereof.  


Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu