Difference between revisions of "Gas fermentation"

Jump to navigation Jump to search
668 bytes added ,  15:01, 20 September 2021
no edit summary
Line 11: Line 11:
=== Production organisms ===
=== Production organisms ===
[[File:Reduktiver Acetyl-CoA-Weg.png|thumb|300px|The reductive acetyl–CoA pathway]]
[[File:Reduktiver Acetyl-CoA-Weg.png|thumb|300px|The reductive acetyl–CoA pathway]]
A gas fermentation process depends on microorganisms that are able to digest gaseous carbon sources. Best known for this ability are acetogenic bacteria using the Wood-Ljungdahl pathway or acetyl-CoA pathway to fix and convert CO/CO<sub>2</sub> and hydrogen to biomass and products. They are able to synthesize useful products such as ethanol, butanol and 2,3-butanediol and they are anaerobes so need to be used in an anaerobic, oxygen-free atmosphere, fermentation setting. For commercial applications, mainly strains from ''Clostridium ljungdahlii'' and ''C. autoethanogenum'' are used.
A gas fermentation process depends on microorganisms that are able to digest gaseous carbon sources. Best known for this ability are acetogenic bacteria using the Wood-Ljungdahl pathway or acetyl-CoA pathway to fix and convert CO/CO<sub>2</sub> and hydrogen to biomass and products. They are able to synthesize useful products such as ethanol, butanol and 2,3-butanediol and they are anaerobes so need to be used in an anaerobic, oxygen-free atmosphere, fermentation setting. For commercial applications, mainly strains from ''Clostridium ljungdahlii'' and ''C. autoethanogenum'' are used.<ref name=":0" /><ref>{{Cite journal|title=Biotechnology for Chemical Production: Challenges and Opportunities|year=2016-03|author=Mark J. Burk, Stephen Van Dien|journal=Trends in Biotechnology|volume=34|issue=3|page=187–190|doi=10.1016/j.tibtech.2015.10.007}}</ref> Others acetogenic bacteria are in development as production organisms and there is a lot of activity in synthetic biology and genetic/metabolism engineering to modify these organisms. Additionally there are developments to integrate the metabolic pathways into well-known non-acetogenic organisms like ''Escherichia coli'' or yeasts to expand the options for fermentation processes.<ref name=":0" />


=== Fermentation technology ===
=== Fermentation technology ===
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu