Difference between revisions of "Polymerisation"

Jump to navigation Jump to search
304 bytes added ,  08:19, 30 November 2021
no edit summary
Line 4: Line 4:


==Feedstock==
==Feedstock==
=== Origin and composition ===
Several bio-based feedstock options have been explored for the production of bio-based polymers. Lignin can be depolymerised and the obtained products can be used as monomers. Ethanol from fermentations can be processed to produce ethylene, a common feedstock for polymerisations. Fatty acids can be used in long-chain linear aliphatic polymers. Other biomass feedstock includes CO<sub>2</sub>, terpenes, and furfural.<ref name=":0">{{Cite journal|title=Sustainable polymers from biomass: Bridging chemistry with materials and processing|year=2020-02-01|journal=Progress in Polymer Science|volume=101|page=101197|doi=10.1016/j.progpolymsci.2019.101197|author=Zhongkai Wang, Mitra S. Ganewatta, Chuanbing Tang}}</ref> High purity of the feedstock is crucial for successful polymerisation reactions, which are highly susceptible to pollutants, often leading to lower polymerisation grades or smaller polymerisation chains.
Several bio-based feedstock options have been explored for the production of bio-based polymers. Lignin can be depolymerised and the obtained products can be used as monomers. Ethanol from fermentations can be processed to produce ethylene, a common feedstock for polymerisations. Fatty acids can be used in long-chain linear aliphatic polymers. Other biomass feedstock includes CO<sub>2</sub>, terpenes, and furfural.<ref name=":0">{{Cite journal|title=Sustainable polymers from biomass: Bridging chemistry with materials and processing|year=2020-02-01|journal=Progress in Polymer Science|volume=101|page=101197|doi=10.1016/j.progpolymsci.2019.101197|author=Zhongkai Wang, Mitra S. Ganewatta, Chuanbing Tang}}</ref> High purity of the feedstock is crucial for successful polymerisation reactions, which are highly susceptible to pollutants, often leading to lower polymerisation grades or smaller polymerisation chains.
=== Pre-treatment ===
==Process and technologies==
==Process and technologies==
There has been signifcant effort to produce polymers from biomass rest streams. The key challenge lies in producing materials that have comparable or improved properties to their fossil-based counterparts. The right processing, which is often neglected by chemists, plays a crucial role in enhancing the material properties.<ref name=":0" />
There has been signifcant effort to produce polymers from biomass rest streams. The key challenge lies in producing materials that have comparable or improved properties to their fossil-based counterparts. The right processing, which is often neglected by chemists, plays a crucial role in enhancing the material properties.<ref name=":0" />
==Product==
==Product==
Three critical processes to obtain sustainable bio-based polymers are the conversion of lignin monomers to polymers, the production of bio-based polyolefins, for example from ethylene via the ethanol route, and the production of long-chain aliphatic polycondensates, which can be obtained from fatty acids.<ref name=":0" />
Three critical processes to obtain sustainable bio-based polymers are the conversion of lignin monomers to polymers, the production of bio-based polyolefins, for example from ethylene via the ethanol route, and the production of long-chain aliphatic polycondensates, which can be obtained from fatty acids.<ref name=":0" />
=== Post-treatment ===
==Technology providers==
==Technology providers==
{| class="wikitable sortable mw-collapsible mw-collapsed"
{| class="wikitable sortable mw-collapsible mw-collapsed"
Line 67: Line 75:


== Open access pilot and demo facility providers ==
== Open access pilot and demo facility providers ==
[https://biopilots4u.eu/database?field_technology_area_data_target_id=102&field_technology_area_target_id%5B94%5D=94&field_contact_address_value_country_code=All&field_scale_value=All&combine=&combine_1= Pilots4U Database]


==Patents==
==Patents==
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu