212
edits
Line 20: | Line 20: | ||
=== Exemplary applications === | === Exemplary applications === | ||
==== Improving fermentation feeds ==== | |||
Flocculation is used in biotechnology applications in conjunction with microfiltration to improve the efficiency of biological feeds. The addition of synthetic flocculants to the bioreactor can increase the average particle size making microfiltration more efficient. When flocculants are not added, cakes can form and accumulate causing low cell viability. Positively charged flocculants work better than negatively charged ones since the cells are generally negatively charged. | Flocculation is used in biotechnology applications in conjunction with microfiltration to improve the efficiency of biological feeds. The addition of synthetic flocculants to the bioreactor can increase the average particle size making microfiltration more efficient. When flocculants are not added, cakes can form and accumulate causing low cell viability. Positively charged flocculants work better than negatively charged ones since the cells are generally negatively charged. | ||
==== Yeast flocculation ==== | |||
In the brewing industry flocculation is a very important process in fermentation during the production of beer where cells form macroscopic flocs. These flocs cause the yeast to sediment or rise to the top of a fermentation at the end of the fermentation. Subsequently, the yeast can be collected (cropped) from the top (ale fermentation) or the bottom (lager fermentation) of the fermenter in order to be reused for the next fermentation. | In the brewing industry flocculation is a very important process in fermentation during the production of beer where cells form macroscopic flocs. These flocs cause the yeast to sediment or rise to the top of a fermentation at the end of the fermentation. Subsequently, the yeast can be collected (cropped) from the top (ale fermentation) or the bottom (lager fermentation) of the fermenter in order to be reused for the next fermentation. | ||