2,521
edits
Lars Krause (talk | contribs) |
Lars Krause (talk | contribs) (→CCS) |
||
Line 121: | Line 121: | ||
BioRenGaz has developed a new patented anaerobic digestion technology that is 4 times more efficient and much more compact than conventional biogas plants thanks to vertical silo design. The anaerobic filter uses a recycled and 100% renewable packing material to replace costly and polluting plastic packing. This medium provides an ecological habitat for the bacteria and enhances their performance. The solution is adapted for the treatment of liquid effluents and the great advantage, unlike other technologies, is that it can also valorize pulpy effluents like biowaste pulp. The bioreactors have lower operational costs and increased energy production by keeping the micro-organisms on the packing material, which allows producing 10% more biogas. The system is modular, so bioreactors can be built from a small scale and easily be expanded as needed. The Solution aims for the optimization of the economic and environmental model of energy and agronomic recovery of biowaste. | BioRenGaz has developed a new patented anaerobic digestion technology that is 4 times more efficient and much more compact than conventional biogas plants thanks to vertical silo design. The anaerobic filter uses a recycled and 100% renewable packing material to replace costly and polluting plastic packing. This medium provides an ecological habitat for the bacteria and enhances their performance. The solution is adapted for the treatment of liquid effluents and the great advantage, unlike other technologies, is that it can also valorize pulpy effluents like biowaste pulp. The bioreactors have lower operational costs and increased energy production by keeping the micro-organisms on the packing material, which allows producing 10% more biogas. The system is modular, so bioreactors can be built from a small scale and easily be expanded as needed. The Solution aims for the optimization of the economic and environmental model of energy and agronomic recovery of biowaste. | ||
=== Dranco === | === Dranco === |