Difference between revisions of "Hydrolysis"
[checked revision] | [checked revision] |
(→Acid: expanding the page and added citations) |
(Expanding the page and fixing Wiki ref.) |
||
Line 1: | Line 1: | ||
'''Hydrolysis''' (/haɪˈdrɒlɪsɪs/; from Ancient Greek ''hydro-'' 'water', and ''lysis'' 'to unbind') is a chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.<ref>{{Cite web|year=2002|title=Hydrolysis|e-pub date=2002|date accessed=2021|url=https://en.wikipedia.org/wiki/Hydrolysis}}</ref> | '''Hydrolysis''' (/haɪˈdrɒlɪsɪs/; from Ancient Greek ''hydro-'' 'water', and ''lysis'' 'to unbind') is a chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.<ref>{{Cite web|year=2002|title=Hydrolysis|e-pub date=2002|date accessed=2021|url=https://en.wikipedia.org/wiki/Hydrolysis|Author=Wikipedia}}</ref> In lignocellulosic biomass, the cellulose and hemicellulose breaks down into individual sugars, where hemicellulose is easier to hydrolyse than cellulose.<ref>{{Cite journal|title=Dilute acid hydrolysis of lignocellulosic biomass|year=2010-01-15|author=P. Lenihan, A. Orozco, E. O’Neill, M.N.M. Ahmad, D.W. Rooney, G.M. Walker|journal=Chemical Engineering Journal|volume=156|issue=2|page=395–403|doi=10.1016/j.cej.2009.10.061}}</ref> The result of hydrolysing hemicellulose and cellulose is sugars (glucose, xylose, mannose, and galactose) and organic acids (formic acid and acetic acid).<ref>{{Cite journal|title=Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation|year=2020-04-17|author=Katarzyna Świątek, Stephanie Gaag, Andreas Klier, Andrea Kruse, Jörg Sauer, David Steinbach|journal=Catalysts|volume=10|issue=4|page=437|doi=10.3390/catal10040437}}</ref> | ||
== Feedstock == | == Feedstock == | ||
Line 7: | Line 7: | ||
=== Acid === | === Acid === | ||
'''Acid hydrolysis''' is a hydrolysis process in which a protic acid is used to catalyze the hydrolysis reaction. | '''Acid hydrolysis''' is a hydrolysis process in which a protic acid is used to catalyze the hydrolysis reaction. | ||
=== Alkali === | === Alkali === |
Revision as of 12:27, 13 August 2021
Hydrolysis (/haɪˈdrɒlɪsɪs/; from Ancient Greek hydro- 'water', and lysis 'to unbind') is a chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.[1] In lignocellulosic biomass, the cellulose and hemicellulose breaks down into individual sugars, where hemicellulose is easier to hydrolyse than cellulose.[2] The result of hydrolysing hemicellulose and cellulose is sugars (glucose, xylose, mannose, and galactose) and organic acids (formic acid and acetic acid).[3]
Feedstock
Biowaste lorum ipsum
Process and technologies
Acid
Acid hydrolysis is a hydrolysis process in which a protic acid is used to catalyze the hydrolysis reaction.
Alkali
Alkaline hydrolysis refers to types of nucleophilic substitution reactions in which the attacking nucleophile is a hydroxide ion.
Salt
Lorum ipsum
Ionic liquids
Lorum ipsum
Sulphite salt
Lorum ipsum
Solvent
Lorum ipsum
Organosolv
Lorum ipsum.
Product
Lorum ipsum
Technology providers
Lorum ipsum
Patents
Lorum ipsum
References
- ↑ Wikipedia, 2002: Hydrolysis 2002, Last access 2021. https://en.wikipedia.org/wiki/Hydrolysis
- ↑ P. Lenihan, A. Orozco, E. O’Neill, M.N.M. Ahmad, D.W. Rooney, G.M. Walker, 2010-01-15: Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, Vol. 156, (2), 395–403. doi: https://doi.org/10.1016/j.cej.2009.10.061
- ↑ Katarzyna Świątek, Stephanie Gaag, Andreas Klier, Andrea Kruse, Jörg Sauer, David Steinbach, 2020-04-17: Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts, Vol. 10, (4), 437. doi: https://doi.org/10.3390/catal10040437