Difference between revisions of "Hydrolysis"

45 bytes added ,  13:14, 30 May 2022
m
→‎Process and technologies: added pulping link
Tags: Visual edit Manual revert
m (→‎Process and technologies: added pulping link)
Line 26: Line 26:
'''Acid hydrolysis''' is a hydrolysis process in which a protic acid is used to catalyze the hydrolysis reaction. Acids are used mainly for hydrolysis of cellulose [10]. A strong acid, such as formic, hydrochloric, nitric, phosphoric, or sulphuric acid can be used in concentrated or diluted form. '''Concentrated acid''' (10-30 %) can penetrate the lignin structure and break down the cellulose and hemicellulose to individual sugars at low temperature and with high yield. Downsides are the high acid consumption and high corrosion potential. These downsides are circumvented with the use of '''diluted acid''' (2-5 %). However, in the latter case, higher temperature is required, which can lead to side product formation such as furfural and 5-hydroxymethyl-furfural.<ref name=":1">{{Cite book|author=Alessandra Verardi, Isabella De Bari, Emanuele Ricca and Vincenza Calabrò|year=2012|section_title=Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives|editor=Marco Aurelio Pinheiro Lima and Alexandra Pardo Policastro Natalense|book_title=Bioethanol|publisher=IntechOpen}}</ref>
'''Acid hydrolysis''' is a hydrolysis process in which a protic acid is used to catalyze the hydrolysis reaction. Acids are used mainly for hydrolysis of cellulose [10]. A strong acid, such as formic, hydrochloric, nitric, phosphoric, or sulphuric acid can be used in concentrated or diluted form. '''Concentrated acid''' (10-30 %) can penetrate the lignin structure and break down the cellulose and hemicellulose to individual sugars at low temperature and with high yield. Downsides are the high acid consumption and high corrosion potential. These downsides are circumvented with the use of '''diluted acid''' (2-5 %). However, in the latter case, higher temperature is required, which can lead to side product formation such as furfural and 5-hydroxymethyl-furfural.<ref name=":1">{{Cite book|author=Alessandra Verardi, Isabella De Bari, Emanuele Ricca and Vincenza Calabrò|year=2012|section_title=Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives|editor=Marco Aurelio Pinheiro Lima and Alexandra Pardo Policastro Natalense|book_title=Bioethanol|publisher=IntechOpen}}</ref>


Acid hydrolysis can be further improved by the addition of salts, such as metal salts or suphite salts. Metals such as aluminium, calcium, copper, iron and zincnc can be used to increase the sugar yield [6]. Similar to sulphite pulping, sulphites can be added to aid in lignin removal. .  
Acid hydrolysis can be further improved by the addition of salts, such as metal salts or suphite salts. Metals such as aluminium, calcium, copper, iron and zincnc can be used to increase the sugar yield [6]. Similar to [[Pulping and fractionation#Sulphite pulping|sulphite pulping]], sulphites can be added to aid in lignin removal.  


===== Sulfuric acid =====
===== Sulfuric acid =====