2,521
edits
m |
Lars Krause (talk | contribs) |
||
Line 2: | Line 2: | ||
| Feedstock = [[Biowaste]] | | Feedstock = [[Biowaste]] | ||
| Product = Biomass (dispersed, disrupted, emulsified, extracted, homogenised) | | Product = Biomass (dispersed, disrupted, emulsified, extracted, homogenised) | ||
|Name=Ultrasonication|Category= | |Name=Ultrasonication|Category=[[Pre-processing]] ([[Pre-processing#Physical_processes_and_technologies|Physical processes and technologies]]), [[Post-processing]] ([[Post-processing#Physical_processes_and_technologies|Physical processes and technologies]])}} | ||
<onlyinclude>'''Ultrasonication''' is a physical treatment to disperse, disrupt, emulsify, extract, and/or homogenise biomass via the application of ultrasonic frequencies (>20 kHz). The propagation of sound waves through the biomass results in spontaneous formation and collapse of microsized cavities. This activity produces a hot-spot effect, resulting in high temperature and pressure gradients to form locally, while the overall conditions remain ambient. This effect can be used to break down morphologies, for example for the depolymerisation of lignocellulosic biowaste.<ref name=":1">{{Cite book|author=Preeti Bhagwan Subhedar|year=2016|section_title=Use of Ultrasound for Pretreatment of Biomass and Subsequent Hydrolysis and Fermentation|book_title=Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery|publisher=Elsevier|place=Amsterdam, Netherlands|ISBN=0-12-802561-1|editor=}}</ref></onlyinclude> | <onlyinclude>'''Ultrasonication''' is a physical treatment to disperse, disrupt, emulsify, extract, and/or homogenise biomass via the application of ultrasonic frequencies (>20 kHz). The propagation of sound waves through the biomass results in spontaneous formation and collapse of microsized cavities. This activity produces a hot-spot effect, resulting in high temperature and pressure gradients to form locally, while the overall conditions remain ambient. This effect can be used to break down morphologies, for example for the depolymerisation of lignocellulosic biowaste.<ref name=":1">{{Cite book|author=Preeti Bhagwan Subhedar|year=2016|section_title=Use of Ultrasound for Pretreatment of Biomass and Subsequent Hydrolysis and Fermentation|book_title=Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery|publisher=Elsevier|place=Amsterdam, Netherlands|ISBN=0-12-802561-1|editor=}}</ref></onlyinclude> | ||